Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT

Author:

Mikami A.,Newsome W. T.,Wurtz R. H.

Abstract

Mechanisms of direction selectivity and speed selectivity were studied in single neurons of the middle temporal visual area (MT) of behaving macaque monkeys. Visual stimuli were presented in both smooth and stroboscopic motion within a neuron's receptive field as the monkey fixated a stationary point of light. Direction selectivity, speed selectivity, and the spontaneous discharge characteristics of MT neurons in behaving monkeys were similar to those reported in previous studies in anesthetized monkeys. Stroboscopic motion stimuli were sequences of flashes characterized by the spatial and temporal intervals between each flash. The spatial and temporal intervals were systematically varied so that suppressive and facilitatory interactions could be studied in both the preferred and null directions. Suppression and facilitation were measured by subtracting the peak discharge rate elicited by a single flash from the peak discharge rate elicited by a stroboscopic train of flashes. The dominant mechanism of direction selectivity in MT was a pronounced suppression of discharge for motion in the null direction which we interpreted as inhibition. The inhibition was sufficiently potent to abolish the responses to single flashed stimuli when they were embedded in a series of flashes in the null direction, and it frequently reduced the neuronal discharge to a level below the spontaneous firing rate. Facilitation in the preferred direction was a prominent feature of the responses of some, but not all, MT neurons. The peak discharge rate for stroboscopic motion in the preferred direction was more than twice the peak rate to a single flash for approximately 50% of the neurons in our sample. The direction selectivity of most MT neurons showed the effects of both inhibitory and facilitatory mechanisms, and it was not possible to segregate MT neurons into distinct groups on the basis of these measures. Suppressive mechanisms contributed to speed tuning as well as direction tuning. The low-speed cutoff for motion in the preferred direction resulted from suppression in 82% of the neurons tested. The high-speed cutoff resulted from suppression in 32% of the neurons tested. The latter mechanism appeared to be distinct from the inhibitory mechanism which acted in the null direction in that large spatial intervals were required for its activation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 314 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3