Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro

Author:

Miles R.

Abstract

Afferent fibers from visceral sensory receptors enter the medulla oblongata, form the solitary tract, and synapse with neurons in the nucleus of the solitary tract. In the present study longitudinal slices were prepared from guinea pig medulla in order to examine the properties of transmission at these synapses in vitro. Synaptic responses to selective stimulation of solitary tract fibers were recorded intracellularly from neurons in an area, close to the obex and immediately medial and lateral to the tract, where arterial baroreceptor fibers are known to terminate. The amplitude of maximally evoked postsynaptic potentials (PSPs) in solitary tract neurons was strongly dependent on stimulus frequency. On increasing frequency from 0.5 to 20 Hz, a PSP depression of 80% was reached in 4-8 s. The mean depression was 35% at 5 Hz and 60% at 10 Hz. Sufficient local connections were retained in vitro that solitary tract stimulation evoked disynaptic inhibitory potentials and long latency, possibly polysynaptic, excitatory potentials in some neurons. The possibility that frequency-dependent changes in the efficacy of these local synaptic circuits contributed to PSP depression was examined. The role of postsynaptic inhibition in synaptic depression was tested by examining the frequency dependence of PSPs at membrane potentials close to the reversal of their excitatory component. The resulting hyperpolarizing PSPs were also depressed suggesting that a facilitation of postsynaptic inhibition at high frequency does not underlie the depression. The contribution of depression in multisynaptic excitatory pathways to PSP depression was assessed by exclusion. At low stimulus intensities, excitatory synaptic events with no long latency components were evoked. These events exhibited a similar frequency dependence to that of maximal PSPs. These results suggest that mechanisms operating at synapses made by solitary tract fibers are responsible for the frequency dependence of PSPs recorded in solitary tract neurons. Such mechanisms might contribute to the adaptation of some cardiovascular reflexes initiated by baroreceptors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3