Plasticity occurs in a specific phenotype of neurons in the nucleus tractus solitarius of dystrophin gene‐mutated rats

Author:

Chikamoto Akitoshi1ORCID,Tochinai Ryota1,Sekizawa Shin‐ichi1ORCID,Kuwahara Masayoshi1

Affiliation:

1. Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan

Abstract

AbstractDuchenne muscular dystrophy (DMD) is a severe progressive neuromuscular disorder that causes cardiac and respiratory failure. Patients with DMD have tachycardia and autonomic nervous dysfunction at a young age, which can potentially worsen cardiorespiratory function. Therefore, we hypothesised that plasticity occurs in neurons of the cardiorespiratory brainstem nucleus (nucleus tractus solitarius [NTS]) due to DMD, thus affecting neuronal regulation because afferent information from cardiorespiratory organs changes with disease progression. Patch‐clamp experiments were performed on second‐order NTS neurons from Dmd‐mutated (Dm) rats that showed no functional dystrophin protein expression, as confirmed by immunohistochemistry. NTS neurons are classified into two electrophysiological phenotypes: one showing a delayed onset of spiking from hyperpolarised membrane potentials, namely, delayed‐onset spiking (DS)‐type neurons, and the other showing a rapid onset, namely, rapid‐onset spiking‐type neurons. Neuroplasticity mainly occurs in DS‐type neurons in Dm rats and is characterised by blunted neuronal excitability accompanied by reduced outward currents and a facilitatory effect on synaptic transmission, that is, an increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) without changes in the amplitude and an increased amplitude of tractus solitarius‐evoked EPSCs without changes in the paired‐pulse ratio. Although we cannot rule out the possibility that the neuroplastic changes observed in Dm rats were caused by dystrophin deficiency in the neurons themselves, the plasticity could be caused by cardiorespiratory deterioration and/or adaptation in DMD patients.

Publisher

Wiley

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3