Administration of poly-d-glutamic acid induces proliferation of erythropoietin-producing peritubular cells in rat kidney

Author:

Kishore Bellamkonda K.,Isaac Jorge,Westenfelder Christof

Abstract

Erythropoietin (EPO), a 34-kDa glycoprotein, is produced predominantly by peritubular interstitial cells (PIC) in the renal cortex and is physiologically released when ambient oxygen pressure falls. However, the exact nature of EPO-producing cells in the kidney is not well understood. We discovered that brief administration of a low-molecular-weight synthetic peptide, poly-d-glutamic acid (PDG), induced prompt and robust expansion of EPO-producing PIC in rat kidney, without evidence of tubular cell necrosis/apoptosis or fibrotic reaction. Proliferating PIC in PDG-treated rats were noninflammatory, α-smooth muscle actin negative, and specifically expressed CD73 (ecto-5′-nucleotidase), EPO mRNA, and protein. Increased numbers of EPO-positive PIC persisted even after the cessation of PDG treatment. No erythropoietic effects of EPO were detected, potentially suggesting maintained physiological control of EPO secretion in this normoxic model. We showed previously that PDG is readily filtered and is rapidly taken up and stored in lysosomes of proximal tubular cells (PTC), resulting in an apparently nonnoxious lysosomal storage condition by virtue of its nonhydrolyzable nature (Kishore BK, Maldague P, Tulkens PM, Courtoy PJ. Lab Invest 74: 1013–1023, 1996). Based on these findings, we suggest that unknown signaling molecules, produced by PTC in response to lysosomal PDG storage, appear to specifically stimulate the proliferation of EPO-producing PIC. We conclude that this model is uniquely suited to investigate the biology of EPO production by PIC and may thus facilitate the development of novel and more economical therapies of anemias and other EPO-responsive conditions.

Publisher

American Physiological Society

Subject

Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3