Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct

Author:

Kishore Bellamkonda K.1234,Zhang Yue12,Gevorgyan Haykanush56,Kohan Donald E.123,Schiedel Anke C.7,Müller Christa E.7,Peti-Peterdi János56

Affiliation:

1. Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah;

2. Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah;

3. Department of Physiology, University of Utah Health Sciences Center, Salt Lake City, Utah;

4. Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah;

5. Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California; and

6. Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California

7. PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany;

Abstract

The Gi-coupled adenine receptor (AdeR) binds adenine with high affinity and potentially reduces cellular cAMP levels. Since cAMP is an important second messenger in the renal transport of water and solutes, we localized AdeR in the rat kidney. Real-time RT-PCR showed higher relative expression of AdeR mRNA in the cortex and outer medulla compared with the inner medulla. Immunoblots using a peptide-derived and affinity-purified rabbit polyclonal antibody specific for an 18-amino acid COOH-terminal sequence of rat AdeR, which we generated, detected two bands between ∼30 and 40 kDa (molecular mass of native protein: 37 kDa) in the cortex, outer medulla, and inner medulla. These bands were ablated by preadsorption of the antibody with the immunizing peptide. Immunofluorescence labeling showed expression of AdeR protein in all regions of the kidney. Immunoperoxidase revealed strong labeling of AdeR protein in the cortical vasculature, including the glomerular arterioles, and less intense labeling in the cells of the collecting duct system. Confocal immunofluorescence imaging colocalized AdeR with aquaporin-2 protein to the apical plasma membrane in the collecting duct. Functionally, adenine (10 μM) significantly decreased ( P < 0.01) 1-deamino-8-d-arginine vasopressin (10 nM)-induced cAMP production in ex vivo preparations of inner medullary collecting ducts, which was reversed by PSB-08162 (20 μM, P < 0.01), a selective antagonist of AdeR. Thus, we demonstrated the expression of AdeR in the renal vasculature and collecting ducts and its functional relevance. This study may open a new avenue for the exploration of autocrine/paracrine regulation of renal vascular and tubular functions by the nucleobase adenine in health and disease.

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3