Kallikrein excretion in Dahl salt-sensitive and salt-resistant rats with native and transplanted kidneys

Author:

Churchill P. C.1,Churchill M. C.1,Bidani A. K.1,Rabito S. F.1

Affiliation:

1. Department of Physiology, Wayne State University, Detroit, Michigan48201, USA.

Abstract

Urinary kallikrein excretion is decreased in Dahl salt-sensitive (S) vs. salt-resistant (R) rats, and several lines of reasoning suggest not only that decreased kallikrein excretion is a marker for salt-sensitive hypertension but also that kallikrein might play a pathogenic role. Because previous cross-transplantation studies have demonstrated that the kidney's genotype plays a role in determining the blood pressure of the recipient in Dahl S and R rats, the present experiments were designed to determine whether both blood pressure and urinary kallikrein excretion "traveled with the kidney" in transplantation. The Rapp strains of S and R were maintained on a low- NaCl (0.13%) diet until kidney transplantation (bilaterally nephrectomized recipients), at which time the diet was switched to high NaCl (7.8%). Sixteen days later, blood pressures (tail-cuff plethysmography) of the cross-transplant groups (R/S and S/R, indicating kidney genotype/recipient genotype) were nearly identical to each other and intermediate between the blood pressures of the control groups with transplanted kidneys (R/R and S/S). Renal function studies, performed on anesthetized rats 17 days after surgery, demonstrated that R kidneys had higher glomerular filtration rates, renal plasma flows, and urinary kallikrein excretion rates than S kidneys. These differences tended to be preserved in the cross-transplant groups, and therefore they must be genetically determined intrinsic differences between R and S kidneys. This was especially striking with respect to urinary kallikrein excretion. The rank order of urinary kallikrein excretion was R/R = R/S > S/R = S/S, which implies that it is completely determined by the genotype of the kidney.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3