Analysis of the factors influencing peritubular PCO2 in the rat

Author:

Atherton L. J.,Deen W. M.,Maddox D. A.,Gennari F. J.

Abstract

We have developed a mathematical model to assess the relative contributions of several factors to the high CO2 partial pressures observed in rat peritubular capillaries. This model is based on a single nephron and focuses specifically on the CO2 partial pressure differences (delta PCO2) between peritubular capillaries and the afferent arteriole. The model is formulated by writing steady-state mass balances for the glomerulus, proximal tubule, and peritubular capillaries in addition to equilibrium relationships for CO2, HCO3-, blood protein buffers, and hemoglobin carbamino compounds. Principal input parameters include glomerular blood flow rate, rates of HCO3- and water reabsorption, and the rate of metabolic CO2 production. Under conditions representative of normal Munich-Wistar rats, the model predicts delta PCO2 to be 4.1 mmHg, in approximate agreement with experimental observations reported elsewhere. Metabolic CO2 production is responsible for roughly half of this predicted delta PCO2, the remainder being attributable to reabsorption processes. In examining the sensitivity of delta PCO2 to changes in physiological conditions, we consistently found it to be inversely related to glomerular blood flow rate. The influence of changes in HCO3- reabsorption on delta PCO2 is variable and highly dependent on the arterial acid-base status and the ratio of HCO3- reabsorption to water reabsorption.

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A mathematical model of the rat kidney. III. Ammonia transport;American Journal of Physiology-Renal Physiology;2021-06-01

2. A mathematical model of the rat kidney. II. Antidiuresis;American Journal of Physiology-Renal Physiology;2020-04-01

3. A mathematical model of the rat kidney: K+-induced natriuresis;American Journal of Physiology-Renal Physiology;2017-06-01

4. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2016-11-01

5. Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits;American Journal of Physiology-Renal Physiology;2010-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3