Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits

Author:

Evans Roger G.1,Eppel Gabriela A.1,Michaels Sylvia1,Burke Sandra L.2,Nematbakhsh Mehdi13,Head Geoffrey A.2,Carroll Joan F.4,O'Connor Paul M.5

Affiliation:

1. Department of Physiology, Monash University,

2. Baker IDI Heart and Diabetes Institute, Melbourne, Australia;

3. Isfahan Kidney Research Center/Applied Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran;

4. University of North Texas Health Science Center, Fort Worth, Texas; and

5. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

We examined the mechanisms that maintain stable renal tissue Po2 during moderate renal ischemia, when changes in renal oxygen delivery (Ḋo2) and consumption (V̇o2) are mismatched. When renal artery pressure (RAP) was reduced progressively from 80 to 40 mmHg, V̇o2 (−38 ± 7%) was reduced more than Ḋo2 (−26 ± 4%). Electrical stimulation of the renal nerves (RNS) reduced Ḋo2 (−49 ± 4% at 2 Hz) more than V̇o2 (−30 ± 7% at 2 Hz). Renal arterial infusion of angiotensin II reduced Ḋo2 (−38 ± 3%) but not V̇o2 (+10 ± 10%). Despite mismatched changes in Ḋo2 and V̇o2, renal tissue Po2 remained remarkably stable at ≥40 mmHg RAP, during RNS at ≤2 Hz, and during angiotensin II infusion. The ratio of sodium reabsorption to V̇o2 was reduced by all three ischemic stimuli. None of the stimuli significantly altered the gradients in Pco2 or pH across the kidney. Fractional oxygen extraction increased and renal venous Po2 fell during 2-Hz RNS and angiotensin II infusion, but not when RAP was reduced to 40 mmHg. Thus reduced renal V̇o2 can help prevent tissue hypoxia during mild renal ischemia, but when renal V̇o2 is reduced less than Ḋo2, other mechanisms prevent a fall in renal Po2. These mechanisms do not include increased efficiency of renal oxygen utilization for sodium reabsorption or reduced washout of carbon dioxide from the kidney, leading to increased oxygen extraction. However, increased oxygen extraction could be driven by altered countercurrent exchange of carbon dioxide and/or oxygen between renal arteries and veins.

Publisher

American Physiological Society

Subject

Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3