Axial heterogeneity in the rat proximal convoluted tubule. II. Osmolality and osmotic water permeability

Author:

Liu F. Y.,Cogan M. G.,Rector F. C.

Abstract

To assess whether proximal luminal fluid becomes hypotonic with respect to plasma, free-flow micropuncture measurements were made sequentially from the end-proximal tubule to Bowman's space in 10 tubules of hydropenic Munich-Wistar rats. Osmolality in Bowman's space was 2.8 +/- 0.3 mosmol less than in plasma. Tubular fluid osmolality fell along the tubule and by the end-proximal tubule was 7.5 +/- 0.7 mosmol/kg less than in plasma or 4.7 mosmol/kg less than in Bowman's space. Since luminal fluid became hypotonic, the reabsorbate was hypertonic. The transepithelial osmotic water permeability (Pf) was calculated using simultaneously measured water reabsorption rates. The osmotic gradient responsible for water reabsorption was assumed to be either lumen-to-reabsorbate or lumen-to-peritubular plasma, with a reflection coefficient for sodium chloride of 0.7-1.0. The Pf was then estimated to be between 0.2 and 2.0 cm/s in the first millimeter of tubule and to have fallen to 0.1-0.2 cm/s by the end of the tubule. In conclusion, luminal hypotonicity develops in the rat proximal convoluted tubule and must be considered as part of the osmotic driving force for water reabsorption.

Publisher

American Physiological Society

Subject

Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proximal Nephron;Comprehensive Physiology;2013-07

2. Functionally induced changes in water transport in the proximal tubule segment of rat kidneys;International Journal of Nephrology and Renovascular Disease;2011-04

3. Proximal tubule water transport-lessons from aquaporin knockout mice;American Journal of Physiology-Renal Physiology;2005-12

4. Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice;American Journal of Physiology-Renal Physiology;2000-06-01

5. Chloride transport in the rat S1 proximal tubule;American Journal of Physiology-Renal Physiology;1995-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3