Affiliation:
1. Department of Medicine, University of California, San Francisco, USA.
Abstract
In vivo microperfusion was used to elucidate the modes and regulation of the powerful chloride transport system resident in the rat early (S1) proximal convoluted tubule (PCT). From a complete, glomerular ultrafiltrate-like perfusate, omission of organic solutes reduced chloride absorption by 93 peq.mm-1.min-1 (302 +/- 10 to 209 +/- 24, P < 0.001). From a high-chloride perfusate (a relatively pure NaCl solution devoid of bicarbonate and organic solutes), luminal addition of the active transport inhibitor cyanide reduced chloride absorption by 153 peq.mm-1.min-1 (632 +/- 17 to 479 +/- 9, P < 0.001). Active transport was also estimated directly as 121 +/- 4 peq.mm-1.min-1 using a solution in which sodium isethionate isosmotically replaced bicarbonate and organic solutes, preventing development of a chloride gradient. Intravenous angiotensin II caused a stimulation of chloride absorption from a high-chloride perfusate by 55 peq.mm-1.min-1 (632 +/- 17 to 687 +/- 14, P < 0.05), which was partially cyanide-sensitive (510 +/- 6 peq.mm-1.min-1). In conclusion, the components of the normal S1 PCT chloride reabsorption (approximately 300 peq.mm-1.min-1) from the glomerular ultrafiltrate consist of the following: active transport (40–50%), which can be regulated by angiotensin II; sodium-coupled organic solute transport (30%); and passive, chloride concentration gradient-driven transport (20–25%).
Publisher
American Physiological Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献