Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury

Author:

Tögel Florian,Yang Ying,Zhang Ping,Hu Zhuma,Westenfelder Christof

Abstract

Effective and targeted delivery of cells to injured organs is critical to the development of cell therapies. However, currently available in vivo cell tracking methods still lack sufficient sensitivity and specificity. We examined, therefore, whether a highly sensitive and specific bioluminescence method is suitable to noninvasively image the organ distribution of administered mesenchymal stem cells (MSCs) in vivo. MSCs were transfected with a luciferase/neomycin phosphotransferase construct (luc/neo-MSC). Bioluminescence of these cells was measured (charge-coupled device camera) after treatment with luciferin, showing a linear increase of photon emission with rising cell numbers. To track these cells in vivo, groups of mice were injected with 1 × 105 luc/neo-MSCs/animal and imaged with bioluminescence imaging at various time points. Injection of cells in the suprarenal aorta showed diffuse distribution of cells in normal animals, whereas distinct localization to the kidneys was observed in mice with ischemia- and reperfusion-induced acute kidney injury (AKI). Intrajugular infusion of MSCs demonstrated predominant accumulation of cells in both lungs. In animals with AKI, detectable cell numbers declined over time, as assessed by bioluminescence imaging and confirmed by PCR, a process that was associated with low apoptosis levels of intrarenally located MSCs. In conclusion, the described bioluminescence technology provides a sensitive and safe tool for the repeated in vivo tracking of infused luc/neo-MSCs in all major organs. This method will be of substantial utility in the preclinical testing and design of cell therapeutic strategies in kidney and other diseases.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3