Cytosine Deaminase-Overexpressing hTERT-Immortalized Human Adipose Stem Cells Enhance the Inhibitory Effects of Fluorocytosine on Tumor Growth in Castration Resistant Prostate Cancer

Author:

Kim Jae Heon1,Yang Hee Jo2ORCID,Lee Sang Hun3,Song Yun Seob1

Affiliation:

1. Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea

2. Department of Urology, Soonchunhyang University School of Medicine, Cheonan 31151, Republic of Korea

3. Program in Biomedical Sciences & Engineering, Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea

Abstract

A promising de novo approach for the treatment of Castration-resistant prostate cancer (CRPC) exploits cell-mediated enzyme prodrug therapy comprising cytosine deaminase (CD) and fluorouracil (5-FC). The aim of this study was to determine the potential of bacterial CD-overexpressing hTERT-immortalized human adipose stem cells (hTERT-ADSC.CD) to suppress CRPC. A lentiviral vector encoding a bacterial CD gene was used to transfect and to generate the hTERT-ADSC.CD line. The ability of the cells to migrate selectively towards malignant cells was investigated in vitro. PC3 and hTERT-ADSC.CD cells were co-cultured. hTERT-ADSC.CD and 1 × 106 PC3 cells were administered to nude mice via intracardiac and subcutaneous injections, respectively, and 5-FC was given for 14 days. hTERT-ADSC.CD were successfully engineered. Enhanced in vitro hTERT-ADSC.CD cytotoxicity and suicide effect were evident following administration of 5 μM 5-FC. hTERT-ADSC.CD, together with 5-FC, augmented the numbers of PC3 cells undergoing apoptosis. In comparison to controls administered hTERT-ADSC.CD monotherapy, hTERT-ADSC.CD in combination with 5-FC demonstrated a greater suppressive effect on tumor. In CPRC-bearing mice, tumor suppression was enhanced by the combination of CD-overexpressing ADSC and the prodrug 5-FC. Stem cells exhibiting CD gene expression are a potential novel approach to treatment for CRPC.

Funder

Soonchunhyang University Research Fund and the National Research Foundation of Korea

Ministry of Education, Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3