Update of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis

Author:

Kanwar Yashpal S.,Wada Jun,Lin Sun,Danesh Farhad R.,Chugh Sumant S.,Yang Qiwei,Banerjee Tushar,Lomasney Jon W.

Abstract

One of the hallmarks of mammalian nephrogenesis includes a mesenchymal-epithelial transition that is accomplished by intercalation of the ureteric bud, an epithelium-lined tubelike structure, into an undifferentiated mesenchyme, and the latter then undergoes an inductive transformation and differentiates into an epithelial phenotype. At the same time, the differentiating mesenchyme reciprocates by inducing branching morphogenesis of the ureteric bud, which forms a treelike structure with dichotomous iterations. These reciprocal inductive interactions lead to the development of a functioning nephron unit made up of a glomerulus and proximal and distal tubules. The inductive interactions and differentiation events are modulated by a number of transcription factors, protooncogenes, and growth factors and their receptors, which regulate the expression of target morphogenetic modulators including the ECM, integrin receptors, and cell adhesion molecules. These target macromolecules exhibit spatiotemporal and stage-specific developmental regulation in the metanephros. The ECM molecules expressed at the epithelial-mesenchymal interface are perhaps the most relevant and conducive to the paracrine-juxtacrine interactions in a scenario where the ligand is expressed in the mesenchyme while the receptor is located in the ureteric bud epithelium or vice versa. In addition, expression of the target ECM macromolecules is regulated by matrix metalloproteinases and their inhibitors to generate a concentration gradient at the interface to further propel epithelial-mesenchymal interactions so that nephrogenesis can proceed seamlessly. In this review, we discuss and update our current understanding of the role of the ECM and related macromolecules with respect to metanephric development.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3