Inhibition of diuretic stimulation of an insect secretory epithelium by a cGMP-dependent protein kinase

Author:

Ruka Kristen A.1,Miller Anna P.1,Blumenthal Edward M.1

Affiliation:

1. Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin

Abstract

The rate of urine secretion by insect Malpighian tubules (MTs) is regulated by multiple diuretic and antidiuretic hormones, often working either synergistically or antagonistically. In the Drosophila melanogaster MT, only diuretic factors have been reported. Two such agents are the biogenic amine tyramine (TA) and the peptide drosokinin (DK), both of which act on the stellate cells of the tubule to increase transepithelial chloride conductance. In the current study, TA and DK signaling was quantified by microelectrode recording of the transepithelial potential in isolated Drosophila MTs. Treatment of tubules with cGMP caused a significant reduction in the depolarizing responses to both TA and DK, while cAMP had no effect on these responses. To determine whether a specific cGMP-dependent protein kinase (PKG) was mediating this inhibition, PKG expression was knocked down by RNAi in either the principal cells or the stellate cells. Knockdown of Pkg21D in the stellate cells eliminated the modulation of TA and DK signaling. Knockdown of Pkg21D with a second RNAi construct also reduced the modulation of TA signaling. In contrast, knockdown of the expression of foraging or CG4839, which encodes a known and a putative PKG, respectively, had no effect. These data indicate that cGMP, acting through the Pkg21D gene product in the stellate cells, can inhibit signaling by the diuretic agents TA and DK. This represents a novel function for cGMP and PKG in the Drosophila MT and suggests the existence of an antidiuretic hormone in Drosophila .

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3