Author:
Sajadi Farwa,Uyuklu Ali,Paputsis Christine,Lajevardi Aryan,Wahedi Azizia,Ber Lindsay Taylor,Matei Andreea,Paluzzi Jean-Paul V.
Abstract
AbstractInsect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian ‘renal’ tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Ontario Ministry of Research, Innovation and Science
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献