Anti-diuretic hormone ITP signals via a guanylate cyclase receptor to modulate systemic homeostasis in Drosophila

Author:

Gera Jayati1,Agard Marishia2,Nave Hannah1,Sajadi Farwa2,Thorat Leena2,Kondo Shu3,Nässel Dick R.4ORCID,Paluzzi Jean-Paul V.2ORCID,Zandawala Meet156ORCID

Affiliation:

1. Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg

2. Department of Biology, York University

3. Department of Biological Science and Technology, Tokyo University of Science

4. Department of Zoology, Stockholm University

5. Department of Biochemistry and Molecular Biology, University of Nevada

6. Integrative Neuroscience Program, University of Nevada

Abstract

Insects have evolved a variety of neurohormones that enable them to maintain their nutrient and osmotic homeostasis. While the identities and functions of various insect metabolic and diuretic hormones have been well-established, the characterization of an anti-diuretic signaling system that is conserved across most insects is still lacking. To address this, here we characterized the ion transport peptide (ITP) signaling system in Drosophila . The Drosophila ITP gene encodes five transcript variants which generate three different peptide isoforms: ITP amidated (ITPa) and two ITP-like (ITPL1 and ITPL2) isoforms. Using a combination of anatomical mapping and single-cell transcriptome analyses, we comprehensively characterized the expression of all three ITP isoforms in the nervous system and peripheral tissues. Our analyses reveal widespread expression of ITP isoforms. Moreover, we show that ITPa is released during dehydration and recombinant Drosophila ITPa inhibits diuretic peptide-induced renal tubule secretion ex vivo , thus confirming its role as an anti-diuretic hormone. Using a phylogenetic-driven approach and the ex vivo secretion assay, we identified and functionally characterized Gyc76C, a membrane guanylate cyclase, as an elusive Drosophila ITPa receptor. Thus, knockdown of Gyc76C in renal tubules abolishes the inhibitory effect of ITPa on diuretic hormone secretion. Extensive anatomical mapping of Gyc76C reveals that it is highly expressed in larval and adult tissues associated with osmoregulation (renal tubules and rectum) and metabolic homeostasis (fat body). Consistent with this expression, knockdown of Gyc76C in renal tubules impacts tolerance to osmotic and ionic stresses, whereas knockdown specifically in the fat body impacts feeding, nutrient homeostasis and associated behaviors. We also complement receptor knockdown experiments with ITPa overexpression in ITP neurons. Interestingly, ITPa-Gyc76C pathways deciphered here are reminiscent of the atrial natriuretic peptide signaling in mammals. Lastly, we utilized connectomics and single-cell transcriptomics to identify synaptic and paracrine pathways upstream and downstream of ITP-expressing neurons. Taken together, our systematic characterization of the ITP signaling establishes a tractable system to decipher how a small set of neurons integrates diverse inputs to orchestrate systemic homeostasis in Drosophila .

Publisher

eLife Sciences Publications, Ltd

Reference101 articles.

1. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord;Elife,2020

2. Basic local alignment search tool;J Mol Biol,1990

3. Actions of Ion-Transport Peptide From Locust Corpus Cardiacum on Several Hindgut Transport Processes;Journal of Experimental Biology,1992a

4. Isolation of a neuropeptide from locust corpus cardiacum which influences ileal transport;J Exp Biol,1992b

5. The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain;J Cell Sci,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3