Renal effects induced by prolonged mPGES1 inhibition

Author:

Salazar Francisco1,Vazquez Michael L.2,Masferrer Jaime L.2,Mbalaviele Gabriel2,Llinas Maria T.1,Saez Fara1,Arhancet Grace2,Salazar F. Javier1

Affiliation:

1. Department of Physiology, School of Medicine, Campus Mare Nostrum of Excellence, University of Murcia, Murcia, Spain; and

2. Pfizer, Incorporated, St. Louis, Missouri

Abstract

The importance of membrane-bound PGE synthase 1 (mPGES1) in the regulation of renal function has been examined in mPGES1-deficient mice or by evaluating changes in its expression. However, it is unknown whether prolonged mPGES1 inhibition induces significant changes of renal function when Na+ intake is normal or low. This study examined the renal effects elicited by a selective mPGES1 inhibitor (PF-458) during 7 days in conscious chronically instrumented dogs with normal Na+ intake (NSI) or low Na+ intake (LSI). Results obtained in both in vitro and in vivo studies have strongly suggested that PF-458 is a selective mPGES1 inhibitor. The administration of 2.4 mg·kg−1·day−1 PF-458 to dogs with LSI did not induce significant changes in renal blood flow (RBF) and glomerular filtration rate (GFR). A larger dose of PF-458 (9.6 mg·kg−1·day−1) reduced RBF ( P < 0.05) but not GFR in dogs with LSI and did not induce changes of renal hemodynamic in dogs with NSI. Both doses of PF-458 elicited a decrease ( P < 0.05) in PGE2 and an increase ( P < 0.05) in 6-keto-PGF. The administration of PF-458 did not induce significant changes in renal excretory function, plasma renin activity, and plasma aldosterone and thromboxane B2 concentrations in dogs with LSI or NSI. The results obtained suggest that mPGES1 is involved in the regulation of RBF when Na+ intake is low and that the renal effects elicited by mPGES1 inhibition are modulated by a compensatory increment in PGI2. These results may have some therapeutical implications since it has been shown that prolonged mPGES1 inhibition has lower renal effects than those elicited by nonsteroidal anti-inflammatory drugs or selective cyclooxygenase-2 inhibitors.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3