Cholera toxin enhances adenylate cyclase-dependent transport in toad urinary bladder

Author:

Hoch B. S.,Levine S. D.

Abstract

Cholera toxin (CT) irreversibly ADP-ribosylates and activates the nucleotide-stimulatory (Ns) subunit of adenylate cyclase in many tissues, thereby eliciting cyclase-dependent functions. Although earlier studies performed at room temperature could not demonstrate CT-stimulated water transport in toad urinary bladder, subsequent work in other tissues has emphasized the need for incubation at 35-37 degrees C to effect ribosylation and the subsequent physiological effects. We found that incubating tissues with amphibian culture media, rather than Ringer solution, maintained tissue viability at this higher temperature and permitted prolonged incubation with CT. At 37 degrees C, in the presence of 0.1 mM phosphodiesterase inhibitor (1-methyl-3-isobutylxanthine, MIX), 0.2-200 nM mucosal CT caused a dose-dependent but submaximal enhancement of water flux and urea transport. Elimination of MIX from the bath diminished subsequent CT-induced stimulation, supporting a role for adenosine 3',5'-cyclic monophosphate (cAMP) as mediator of the CT effect. The increased water flow was stable for greater than 1 h after removal of CT from the bath, consistent with irreversible stimulation of the cyclase. Mucosal CT stimulated transport to a greater degree than serosal CT, paralleling the pattern seen in the intestine, which is compatible with passage of the toxin's a subunit across the cell to the serosal membrane cyclase. Exposure of the tissue's mucosal surface to GM1 ganglioside, (the natural receptor for the CT b subunit) yielded maximal stimulation of water flow and near-maximal urea transport, presumably by increasing CT's binding to the cell membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3