Cellular mechanism of lithium-induced nephrogenic diabetes insipidus in rats

Author:

Yamaki M.1,Kusano E.1,Tetsuka T.1,Takeda S.1,Homma S.1,Murayama N.1,Asano Y.1

Affiliation:

1. Department of Medicine, Jichi Medical School, Tochigi, Japan.

Abstract

One of the mechanisms by which Li evokes polyuria is thought to be impairment of arginine vasopressin (AVP)-sensitive adenylate cyclase (AdC) in cells of the renal collecting duct. To investigate how AdC is influenced by chronic administration of Li, we created nephrogenic diabetes insipidus (NDI) in rats and microdissected the medullary collecting tubule from both control and NDI rats. In the NDI group, the 10(-6) M AVP-stimulated cAMP contents failed to increase completely, and the levels were significantly lower than that of the control group (10.4 +/- 1.4 vs. 48.4 +/- 4.7 fmol/mm, P less than 0.001). Pretreatment with pertussis toxin (PT), an inhibitor of inhibitory G protein (Gi), did not affect the basal cAMP levels in both groups, although it increased AVP-stimulated cAMP production in the NDI group in a dose- and time-dependent manner. AVP-stimulated cAMP production with over 100 ng/ml PT in the NDI group reached the levels observed in the control group. Incubation with cholera toxin, an agonist of stimulatory G protein (Gs), increased the cAMP content in the two groups to almost equal levels. To exclude the possibility that prostaglandin E2 (PGE2) is involved in the cellular mechanism of Li-induced NDI, the effect of indomethacin (Indo) on PT action was examined. However, Indo (10(-5) M) did not influence either the basal or AVP-dependent cAMP contents. From these results it is suggested that Li impairs AVP-sensitive AdC not through inhibition of Gs but through activation of Gi and that PGE2 may not be involved in the cellular pathogenesis of NDI at least in the rat at the step of cAMP formation.

Publisher

American Physiological Society

Subject

Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3