Combinatorial expression of claudins in the proximal renal tubule and its functional consequences

Author:

Curry Joshua N.12ORCID,Tokuda Shinsaku32,McAnulty Patrick32,Yu Alan S. L.132ORCID

Affiliation:

1. Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas

2. Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas

3. Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas

Abstract

The proximal renal tubule (PT) is characterized by a highly conductive paracellular pathway, which contributes to a significant amount of solute and water reabsorption by the kidney. Claudins are tight junction proteins that, in part, determine the paracellular permeability of epithelia. In the present study, we determined the expression pattern of the major PT claudins. We found that claudin-2 and claudin-10 are coexpressed throughout the PT, whereas claudin-3 is coexpressed with claudin-2 predominantly in the proximal straight tubule. Additionally, claudin-2 and claudin-3 are expressed separately within mutually exclusive populations of descending thin limbs. We developed a novel double-inducible Madin-Darby canine kidney I cell model to characterize in vitro the functional effect of coexpression of PT claudins. In keeping with previous studies, we found that claudin-2 alone primarily increased cation (Na+ and Ca2+) permeability, whereas claudin-10a alone increased anion (Cl) permeability. Coexpression of claudin-2 and claudin-10a together led to a weak physical interaction between the isoforms and the formation of a monolayer with high conductance but neutral charge selectivity. Claudin-3 expression had a negligible effect on all measures of cell permeability, whether expressed alone or together with claudin-2. In cells coexpressing a claudin-2 mutant, S68C, together with claudin-10a, inhibition of cation permeability through the claudin-2 pore with a thiol-reactive pore blocker did not block anion permeation through claudin-10a. We conclude that claudin-2 and claudin-10a form independent paracellular cation- and anion-selective channels that function in parallel.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3