Depletion of endogenous kallistatin exacerbates renal and cardiovascular oxidative stress, inflammation, and organ remodeling

Author:

Liu Yuying1,Bledsoe Grant2,Hagiwara Makato1,Shen Bo1,Chao Lee1,Chao Julie1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina; and

2. Department of Biology, Charleston Southern University, Charleston, South Carolina

Abstract

Kallistatin (KS) levels are reduced in the kidney and blood vessels under oxidative stress conditions. To determine the function of endogenous KS in the renal and cardiovascular systems, KS levels were depleted by daily injection of anti-rat KS antibody into DOCA-salt hypertensive rats for 10 days. Administration of anti-KS antibody resulted in reduced KS levels in the circulation but increased levels of serum thiobarbituric acid reactive substances (an indicator of lipid peroxidation) as well as superoxide formation in the aorta. Moreover, anti-KS antibody injection resulted in increased NADH oxidase activity and superoxide production but decreased nitric oxide levels in the kidney and heart. Endogenous KS blockade aggravated renal dysfunction, damage, hypertrophy, inflammation, and fibrosis as evidenced by decreased creatinine clearance and increased serum creatinine, blood urea nitrogen and urinary protein levels, tubular dilation, protein cast formation, glomerulosclerosis, glomerular enlargement, inflammatory cell accumulation, and collagen deposition. In addition, rats receiving anti-KS antibody had enhanced cardiac injury as indicated by cardiomyocyte hypertrophy, inflammation, myofibroblast accumulation, and fibrosis. Renal and cardiac injury caused by endogenous KS depletion was accompanied by increases in the expression of the proinflammatory genes tumor necrosis factor-α and intercellular adhesion molecule-1 and the profibrotic genes collagen I and III, transforming growth factor-β, and tissue inhibitor of metalloproteinase-1. Taken together, these results implicate an important role for endogenous KS in protection against salt-induced renal and cardiovascular injury in rats by suppressing oxidative stress, inflammation, hypertrophy, and fibrosis.

Publisher

American Physiological Society

Subject

Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3