Urothelial pathophysiological changes in feline interstitial cystitis: a human model

Author:

Lavelle John P.1,Meyers Susan A.2,Ruiz W. Giovani2,Buffington C. A. Tony3,Zeidel Mark L.2,Apodaca Gerard2

Affiliation:

1. Department of Urology, and

2. Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213; and

3. Ohio State University Veterinary Hospital, Columbus, Ohio 43210-1089

Abstract

Unique barrier properties of the urothelial surface membrane permit urine storage. Interstitial cystitis causes disabling dysuria, and frequency. Similarly, feline interstitial cystitis (FIC) occurs in cats. These studies define the permeability and structural properties of normal and FIC urothelium. To determine the effects of bladder filling, groups were studied before and after hydrodistention. Normal urothelium with or without hydrodistention exhibited high transepithelial resistances (TER) and low water and urea permeabilities, resembling other species. Fluorescence confocal microscopy revealed localization of the marker AE-31 to the apical surface of all umbrella cells in normal urothelium, with the tight junction protein ZO-1 localized to tight junctions. Scanning and transmission electron microscopy revealed uniform distribution of luminal cells with characteristic apical membrane and tight junction morphology. Urothelium in FIC animals displayed reduced TER and increased water and urea permeability following hydrodistention. Structural studies in FIC revealed denuded urothelium, with appearance of AE-31 in underlying epithelial cells. The results demonstrate severe epithelial damage and dysfunction in FIC and suggest novel approaches toward examining the etiology and therapy of IC.

Publisher

American Physiological Society

Subject

Physiology

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3