S1P modulator FTY720 limits matrix expansion in acute anti-thy1 mesangioproliferative glomerulonephritis

Author:

Martini Sebastian,Krämer Stephanie,Loof Tanja,Wang-Rosenke Yingrui,Daig Ute,Budde Klemens,Neumayer Hans-H.,Peters Harm

Abstract

FTY720 is a novel immune modulator whose primary action is blood lymphocyte depletion through interaction with sphingosine-1-phosphate (S1P) receptors. The present study analyzes the effect of FTY720 on both the early mesangial cell injury and the subsequent matrix expansion phase of experimental mesangioproliferative glomerulonephritis. Disease was induced by injection of OX-7 anti-thy1 antibody into male Wistar rats. In both protocols, FTY720 administration (0.3 mg/kg body wt) resulted in a selective and very marked reduction in blood lymphocyte count. In the injury experiment, the S1P receptor modulator was given starting 5 days before and continued until 1 day after antibody injection. FTY720 did not significantly affect the degree of anti-thy1-induced mesangial cell lysis and glomerular-inducible nitric oxide production. In the matrix expansion experiment, FTY720 treatment was started 1 day after antibody injection and continued until day 7. In this protocol, the S1P modulator reduced proteinuria, histological matrix expansion, and glomerular protein expression of TGF-β1, fibronectin, and PAI-1. Glomerular collagen III staining intensity was decreased. FTY720 reduced markedly glomerular lymphocyte number per cross section and to a lesser degree macrophage infiltration. In conclusion, FTY720 significantly limits TGF-β1 overexpression and matrix protein expression following induction of acute anti-thy glomerulonephritis, involving reductions in blood and glomerular lymphocyte numbers. The results suggest that lymphocytes actively contribute to matrix expansion in experimental mesangioproliferative glomerulonephritis. Our study expands on findings on FTY720's beneficial effects on tubulointerstitial and functional disease progression previously reported in anti-thy1-induced chronic glomerulosclerosis.

Publisher

American Physiological Society

Subject

Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3