Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes).

Author:

Cordell J L,Falini B,Erber W N,Ghosh A K,Abdulaziz Z,MacDonald S,Pulford K A,Stein H,Mason D Y

Abstract

A murine monoclonal antibody specific for calf intestinal alkaline phosphatase has been prepared and used in an unlabeled antibody bridge technique for labeling monoclonal antibodies. This procedure--the alkaline phosphatase monoclonal anti-alkaline phosphatase (APAAP) method--gives excellent immunocytochemical labeling of tissue sections and cell smears, comparable in clarity and intensity to that achieved with immunoperoxidase labeling. If the enzyme label is developed with a naphthol salt as a coupling agent and Fast Red or hexazotized new fuchsin as a capture agent, a vivid red reaction product is obtained which is very easily detected by the human eye. For this reason the APAAP technique was found particularly suitable for labeling cell smears (for both cytoplasmic and surface-membrane antigens) and for detecting low numbers of antigen-bearing cells in a specimen (e.g., carcinoma cells in a malignant effusion). It was found possible to enhance the intensity of the APAAP labeling reaction substantially by repeating the second and third incubation steps (i.e., the unlabelled "bridge" antibody and APAAP complexes). The APAAP technique was superior to immunoperoxidase labeling for staining tissues rich in endogenous peroxidase, and could be used in conjunction with immunoperoxidase methods for double immunoenzymatic staining. The method was also applicable to the detection of antigenic molecules following their electrophoretic transfer from SDS-polyacrylamide gels to nitrocellulose sheets ("immunoblotting").

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 3017 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3