Role of renal nerves for the expression of renin in adult rat kidney

Author:

Holmer S.1,Rinne B.1,Eckardt K. U.1,Le Hir M.1,Schricker K.1,Kaissling B.1,Riegger G.1,Kurtz A.1

Affiliation:

1. Klinik und Poliklinik fur Innere Medizin II, Universitat Regensburg, Germany.

Abstract

Utilizing a combination of mechanical and chemical unilateral denervation, we have examined the relevance of renal innervation for the expression of renin in kidneys of adult rats. Renal denervation led to a reduction by 57 +/- 4% of renin-containing areas in denervated kidneys as quantitated by morphometry of kidney sections immunoreactive against a polyclonal antirenin antibody. Preprorenin mRNA content in the denervated kidneys fell to 46 +/- 7% of the contralateral innervated kidneys. Treatment of rats with the beta 1-adrenoreceptor antagonist metoprolol (100 mg.kg-1.day-1) for 2 days decreased renal renin mRNA levels to 71% of control levels. Unilateral renal denervation led to a further decrease of renin mRNA levels also in metoprolol-treated animals to 60% of the values found in the contralateral kidneys. Hypotensive hemorrhage led to a 1.4-fold increase of renin mRNA in the kidneys of sham-treated animals. In unilaterally denervated rats renin mRNA increased to levels similar to those in sham-operated animals in both denervated and in contralateral innervated kidneys in response to bleeding. As a consequence, the ratio of abundance of renin mRNA in the denervated to the innervated kidneys rose to 86 +/- 7%. Pretreatment of the animals with metoprolol, on the other hand, prevented the rise of renin mRNA in response to hypotensive hemorrhage. Our findings suggest that in the adult organism renal neural input significantly contributes to the expression of renin under basal conditions, while it appears to be of less importance for stimulation of renin gene expression by severe blood loss.

Publisher

American Physiological Society

Subject

Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3