Mal protein stabilizes luminal membrane PLC-β3 and negatively regulates ENaC in mouse cortical collecting duct cells

Author:

Tuna Kubra M.1,Liu Bing-Chen2,Yue Qiang2,Ghazi Zinah M.2,Ma He-Ping2,Eaton Douglas C.2,Alli Abdel A.13

Affiliation:

1. Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida

2. Department of Physiology, Emory University School of Medicine, Atlanta, Georgia

3. Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida

Abstract

Abnormally high epithelial Na+ channel (ENaC) activity in the aldosterone-sensitive distal nephron and collecting duct leads to hypertension. Myelin and lymphocyte (Mal) is a lipid raft-associated protein that has been previously shown to regulate Na+-K-2Cl cotransporter and aquaporin-2 in the kidney, but it is not known whether it regulates renal ENaC. ENaC activity is positively regulated by the anionic phospholipid phosphate phosphatidylinositol 4,5-bisphosphate (PIP2). Members of the myristoylated alanine-rich C-kinase substrate (MARCKS) family increase PIP2 concentrations at the plasma membrane, whereas hydrolysis of PIP2 by phospholipase C (PLC) reduces PIP2 abundance. Our hypothesis was that Mal protein negatively regulates renal ENaC activity by stabilizing PLC protein expression at the luminal plasma membrane. We investigated the association between Mal, MARCKS-like protein, and ENaC. We showed Mal colocalizes with PLC-β3 in lipid rafts and positively regulates its protein expression, thereby reducing PIP2 availability at the plasma membrane. Kidneys of 129Sv mice injected with MAL shRNA lentivirus resulted in increased ENaC open probability in split-open renal tubules. Overexpression of Mal protein in mouse cortical collecting duct (mpkCCD) cells resulted in an increase in PLC-β3 protein expression at the plasma membrane. siRNA-mediated knockdown of MAL in mpkCCD cells resulted in a decrease in PLC-β3 protein expression and an increase in PIP2 abundance. Moreover, kidneys from salt-loaded mice showed less Mal membrane protein expression compared with non-salt-loaded mice. Taken together, Mal protein may play an essential role in the negative feedback of ENaC gating in principal cells of the collecting duct.

Funder

NIH NIDDK

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3