NADPH oxidase 4 mediates flow-induced superoxide production in thick ascending limbs

Author:

Hong Nancy J.1,Garvin Jeffrey L.12

Affiliation:

1. Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and

2. Department of Physiology, Wayne State University, Detroit, Michigan

Abstract

We previously showed that luminal flow stimulates thick ascending limb (TAL) superoxide (O2) production by stretching epithelial cells and increasing NaCl transport, and reported that the major source of flow-induced O2is NADPH oxidase (Nox). However, the specific Nox isoform involved is unknown. Of the three isoforms expressed in the kidney—Nox1, Nox2, and Nox4—we hypothesized that Nox4 is responsible for flow-induced O2production in TALs. Measurable flow-induced O2production at physiological flow rates of 0, 5, 10, and 20 nl/min was 5 ± 1, 9 ± 2, 36 ± 6, and 66 ± 8 AU/s, respectively. RT-PCR detected mRNA for all three Nox isoforms in the TAL. The order of RNA abundance was Nox2 > Nox4 >>> Nox1. Since all three isoforms are expressed in TALs and pharmacological inhibitors are not selective, we used rats transduced with siRNA and knockout mice. Nox4 siRNA knocked down Nox4 mRNA expression by 63 ± 7% but did not reduce Nox1 or Nox2 mRNA. Flow-induced O2was 18 ± 9 AU/s in TALs transduced with Nox4 siRNA compared with 77 ± 9 AU/s in tubules transduced with scrambled siRNA. Flow-induced O2was 81 ± 5 AU/s in Nox2 knockout mice compared with 83 ± 13 AU/s in wild-type mice. In TALs transduced with Nox1 siRNA, flow-induced O2was 82 ± 7 AU/s. We conclude that Nox4 mediates flow-induced O2production in TALs.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3