Hydrogen peroxide (H2O2) mediated activation of mTORC2 increases intracellular Na+ concentration in the renal medullary thick ascending limb of Henle

Author:

Zheleznova Nadezhda N.,Kumar Vikash,Kurth Theresa,Cowley Allen W.

Abstract

AbstractHydrogen peroxide (H2O2) production in the renal outer medulla is an important determinant of renal medullary blood flow and blood pressure (BP) salt-sensitivity in Dahl salt-sensitive (SS) rats. The mechanisms and pathways responsible for these actions are poorly understood. Recently, we have discovered that the mTOR complex 2 (mTORC2) plays a critical role in BP salt-sensitivity of SS rats by regulating Na+homeostasis. PP242, an inhibitor of mTORC1/2 pathways exhibits potent natriuretic actions and completely prevented salt-induced hypertension in SS rats. In the present study, we have found that chronic infusion of H2O2into the single remaining kidney of Sprague Dawley (SD) rats (3 days) stimulated the functional marker (pAKTSer473/AKT) of mTORC2 activity measured by Western Blot analysis. No changes in mTORC1 activity in OM were observed as determined by pS6Ser235/236/S6. Using fluorescent microscopy and the Na+sensitive dye Sodium Green, we have shown that H2O2(100 µM added in the bath) increased intracellular sodium concentration ([Na+]i) in renal medullary thick ascending limbs (mTALs) isolated from SD rats. These responses were almost completely abolished by pretreatment of mTAL with 10 µM PP242, indicating that mTORC1/2 pathways were involved in the H2O2induced increase of [Na+]i. mTAL cell volume remained unchanged (± 1%) by H2O2as determined by 3D reconstruction confocal laser scanning microscopy techniques. Consistent with the microscopy data, Western Blot analysis of proteins obtained from freshly isolated mTAL treated with 100 µM H2O2exhibited increased activity/phosphorylation of AKT (pAKTSer473/AKT) that was inhibited by PP242. This was associated with increased protein activity of the apical membrane cotransporter Na+-K+-2Cl(NKCC2) and the Na/H exchanger (NHE-3). Na+-K+-ATPase activity was increased as reflected an increase in the ratio of pNa+-K+-ATPaseSer16to total Na+-K+-ATPase. Overall, the results indicate that H2O2mediated activation of mTORC2 plays a key role in transducing the observed increases of cytosolic [Na+]idespite associated increases of basolateral pump activity.

Funder

National Institute of Heart, Lung and Blood

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3