Time course of proximal tubule response to acute arterial hypertension in the rat

Author:

Chou C. L.1,Marsh D. J.1

Affiliation:

1. Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033.

Abstract

Acute hypertension was previously shown to cause partial inhibition of proximal tubule fluid reabsorption in perfused tubules in the rat. If the inhibition also occurs in unobstructed tubules receiving native glomerular filtrate, hypertension should increase end proximal flow rate despite autoregulation of glomerular filtration rate (GFR). We tested this prediction with a videodensitometric method recently developed for measurement of tubular flow rate that does not interrupt flow to the macula densa. Hypertension was induced by increasing total peripheral resistance in rats receiving several hormones at rates designed to maintain high levels of these agents. End proximal flow rate was increased 18% as early as 1.5–2 min following the induction of hypertension and increased over the course of the next 25–30 min to reach values 50% greater than controls as the hypertension was sustained. Whole-kidney GFR and renal blood flow were fully autoregulated. The results confirm that hypertension increases the fluid load to the loop of Henle, and are consistent with an effect on proximal tubule fluid reabsorption. This increase in fluid load could signal the macula densa and contribute to the efficacy of autoregulation; it could also provide a significant fraction of the increased fluid and salt excretion of pressure natriuresis.

Publisher

American Physiological Society

Subject

Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3