Author:
Natoli Thomas A.,Gareski Tiffany C.,Dackowski William R.,Smith Laurie,Bukanov Nikolay O.,Russo Ryan J.,Husson Hervé,Matthews Douglas,Piepenhagen Peter,Ibraghimov-Beskrovnaya Oxana
Abstract
Development of novel therapies for polycystic kidney disease (PKD) requires assays that adequately reflect disease biology and are adaptable to high-throughput screening. Here we describe an embryonic cystic kidney organ culture model and demonstrate that a new mutant allele of the Pkd1 gene ( Pkd1 tm1Bdgz) modulates cystogenesis in this model. Cyst formation induced by cAMP is influenced by the dosage of the mutant allele: Pkd1 tm1Bdgz −/− cultures develop a larger cystic area compared with +/+ counterparts, while Pkd1 tm1Bdgz +/− cultures show an intermediate phenotype. A similar relationship between the degree of cystogenesis and mutant gene dosage is seen in cystic kidney organ cultures derived from mice with a mutated Nek8 gene ( Nek8 jck). Both Pkd1− and Nek8− cultures display altered cell-cell junctions, with reduced E-cadherin expression and altered desmosomal protein expression, similar to ADPKD epithelia. Additionally, characteristic ciliary abnormalities are identified in cystic kidney cultures, with elevated ciliary polycystin 1 expression in Nek8 homozygous cultures and elevated ciliary Nek8 protein expression in Pkd1 homozygotes. These data suggest that the Nek8 and Pkd1 genes function in a common pathway to regulate cystogenesis. Moreover, compound Pkd1 and Nek8 heterozygous adult mice develop a more aggressive cystic disease than animals with a mutation in either gene alone. Finally, we validate the kidney organ culture cystogenesis assay as a therapeutic testing platform using the CDK inhibitor roscovitine. Therefore, embryonic kidney organ culture represents a relevant model for studying molecular cystogenesis and a rapid tool for the screening for therapies that block cystic growth.
Publisher
American Physiological Society
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献