Interactions of TGF-dependent and myogenic oscillations in tubular pressure

Author:

Chon Ki H.,Raghavan Ramakrishna,Chen Yu-Ming,Marsh Donald J.,Yip Kay-Pong

Abstract

We have previously shown that there are two oscillating components in spontaneously fluctuating single-nephron blood flow obtained from Sprague-Dawley rats (Yip K-P, Holstein-Rathlou NH, and Marsh DJ. Am J Physiol Renal Physiol 264: F427–F434, 1993). The slow oscillation (20–30 mHz) is mediated by tubuloglomerular feedback (TGF), whereas the fast oscillation (100 mHz) is probably related to spontaneous myogenic activity. The fast oscillation is rarely detected in spontaneous tubular pressure because of its small magnitude and the fact that tubular compliance filters pressure waves. We detected myogenic oscillation superimposed on TGF-mediated oscillation when ambient tubular flow was interrupted. Two well-defined peaks are present in the mean power spectrum of stop-flow pressure (SFP) centering at 25 and 100 mHz ( n = 13), in addition to a small peak at 125–130 mHz. Bispectral analysis indicates that two of these oscillations (30 and 100 mHz) interact nonlinearly to produce the third oscillation at 125–130 mHz. The presence of nonlinear interactions between TGF and myogenic oscillations indicates that estimates of the relative contribution of each of these mechanisms in renal autoregulation need to account for this interaction. The magnitude of myogenic oscillations was considerably smaller in the SFP measured from spontaneously hypertensive rats (SHR, n = 13); consequently, nonlinear interactions were not observed with bispectral analysis. Reduced augmentation of myogenic oscillations in SFP of SHR might account for the failure in detecting nonlinear interactions in SHR.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3