Differences in dynamic autoregulation of renal blood flow between SHR and WKY rats

Author:

Chen Y. M.1,Holstein-Rathlou N. H.1

Affiliation:

1. Department of Physiology and Biophysics, University of SouthernCalifornia School of Medicine, Los Angeles 90033.

Abstract

In halothane-anesthetized Wistar-Kyoto (WKY) rats the single-nephron blood flow and the proximal tubule pressure oscillate at a frequency of 35-50 mHz because of the operation of the tubuloglomerular feedback (TGF) mechanism. In spontaneously hypertensive rats (SHR) the oscillations are replaced by chaotic fluctuations. We sought to determine whether this change was associated with a change in the dynamic autoregulation of renal blood flow. In halothane-anesthetized 250- to 320-g SHR and WKY rats, renal blood flow was measured during "white noise" forcing of arterial blood pressure. The frequency response of renal vascular admittance was estimated by the method of autoregressive-moving averages. In the frequency band below 60-70 mHz there was a significant difference in the transfer functions between the two strains of rats. This was due mainly to an increased phase difference, but also to a decreased magnitude of the admittance in SHR at frequencies below 20-30 mHz. Above 70 mHz there was no significant difference in the transfer functions. Because TGF is active in the low frequency band (below approximately 100 mHz), whereas the myogenic mechanism also acts in the higher frequency band, we conclude that the change in the dynamics of TGF leads to a change in the dynamic autoregulation of renal blood flow between SHR and WKY rats. This change results in a more efficient dynamic autoregulation of renal blood flow in the SHR compared with the WKY rats. The functional consequences of this, in terms of the regulation of salt and water excretion, are not presently known.

Publisher

American Physiological Society

Subject

Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of angiotensin II and telmisartan on in vivo high‐resolution renal arterial impedance in rats;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2024-09-01

2. Glomerular microcirculation: Implications for diabetes, preeclampsia, and kidney injury;Acta Physiologica;2023-09-09

3. Renal Considerations in the Treatment of Hypertension;American Journal of Hypertension;2018-01-24

4. Transfer Function Analysis of Dynamic Blood Flow Control in the Rat Kidney;Bulletin of Mathematical Biology;2016-05

5. Renal Autoregulation in Health and Disease;Physiological Reviews;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3