Kidneys sans glomeruli

Author:

Beyenbach Klaus W.1

Affiliation:

1. Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853

Abstract

The evolution of the vertebrate kidney records three occasions, each separated by about 50 million years, when fish have abandoned glomeruli to produce urine by tubular mechanisms. The recurring dismissal of glomeruli suggests a mechanism of aglomerular urine formation intrinsic to renal tubules. Indeed, the transepithelial secretion of organic solutes and of inorganic solutes such as sulfate, phosphate, and magnesium can all drive secretory water flow in renal proximal tubules of fish. However, the secretion of NaCl via secondary active transport of Cl is the primary mover of secretory water flow in, surprisingly, proximal tubules of both glomerular and aglomerular fish. In filtering kidneys, the tubular secretion of solute and water is overshadowed by reabsorptive transport activities, but secretion progressively comes to light as glomerular filtration decreases. Thus the difference between glomerular and aglomerular urine formation is more a difference of degree than of kind. At low rates of glomerular filtration in seawater fish, NaCl-coupled water secretion serves to increase the renal excretory capacity by increasing the luminal volume into which waste, excess, and toxic solutes can be secreted. The reabsorption of NaCl and water in the distal nephron and urinary bladder concentrates unwanted solutes for excretion while minimizing renal water loss. In aglomerular fish, NaCl-coupled water secretion across proximal tubules replaces glomerular filtration to increase renal excretory capacity. A review of the literature suggests that tubular secretion of NaCl and water is an early function of the vertebrate proximal tubule that has been retained throughout evolution. Active transepithelial Cl secretion takes place in gall bladders studied as models of the mammalian proximal tubule and in proximal tubules of amphibians and apparently also of mammals. The tubular secretion of Cl is also observed in mammalian distal tubules. The evidence consistent with and for Cl secretion in, respectively, proximal and distal tubules of the mammalian kidney calls for a reexamination of basic assumptions in renal physiology that may lead to new opportunities for managing some forms of renal disease.

Publisher

American Physiological Society

Subject

Physiology

Reference195 articles.

1. Transcellular Chloride Pathways in Ambystoma Proximal Tubule

2. Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. Na-dependent and -independent modes.

3. Amalou Z, Enjuto M, Grouzis JP, Prevot JC, Jacob JL, Grignon C, and Gibrat R.Mg2+/H+antiport activity in solubilized and reconstituted protein fractions fromHevea brasiliensislutoid vacuole membrane.Plant Physiol Biochem35: 355-361, 1997.

4. Anagnostopoulus T, Edelman A, Panelles G, Teulon J, and Thomas R.Transport du chlore dans le tube proximal.J Physiol79: 132-138, 1984.

5. Anagnostopoulos T, Edelman A, Teulon J, and Planelles G.Mechanisms of proximal tubular reabsorption: contribution of electrophysiologic techniques. In:Advances in Nephrology From the Necker Hospital, edited by Maxwell MH. St. Louis, MO: Mosby, 1983, vol.12, p. 63-84.

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3