Bioenergetics: the evolutionary basis of progressive kidney disease

Author:

Chevalier Robert L.1ORCID

Affiliation:

1. Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States

Abstract

Chronic kidney disease (CKD) affects >10% of the world population, with increasing prevalence in middle age. The risk for CKD is dependent on the number of functioning nephrons through the life cycle, and 50% of nephrons are lost through normal aging, revealing their vulnerability to internal and external stressors. Factors responsible for CKD remain poorly understood, with limited availability of biomarkers or effective therapy to slow progression. This review draws on the disciplines of evolutionary medicine and bioenergetics to account for the heterogeneous nephron injury that characterizes progressive CKD following episodes of acute kidney injury with incomplete recovery. The evolution of symbiosis in eukaryotes led to the efficiencies of oxidative phosphorylation and the rise of metazoa. Adaptations to ancestral environments are the products of natural selection that have shaped the mammalian nephron with its vulnerabilities to ischemic, hypoxic, and toxic injury. Reproductive fitness rather than longevity has served as the driver of evolution, constrained by available energy and its allocation to homeostatic responses through the life cycle. Metabolic plasticity has evolved in parallel with robustness necessary to preserve complex developmental programs, and adaptations that optimize survival through reproductive years can become maladaptive with aging, reflecting antagonistic pleiotropy. Consequently, environmental stresses promote trade-offs and mismatches that result in cell fate decisions that ultimately lead to nephron loss. Elucidation of the bioenergetic adaptations by the nephron to ancestral and contemporary environments may lead to the development of new biomarkers of kidney disease and new therapies to reduce the global burden of progressive CKD.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3