Potassium supplement upregulates the expression of renal kallikrein and bradykinin B2receptor in SHR

Author:

Jin Lan1,Chao Lee1,Chao Julie1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425

Abstract

High potassium intake is known to attenuate hypertension, glomerular lesion, ischemic damage, and stroke-associated death. Our recent studies showed that expression of recombinant kallikrein by somatic gene delivery reduced high blood pressure, cardiac hypertrophy, and renal injury in hypertensive animal models. The aim of this study is to explore the potential role of the tissue kallikrein-kinin system in blood pressure reduction and renal protection in spontaneously hypertensive rats (SHR) on a high-potassium diet. Young SHR were given drinking water with or without 1% potassium chloride for 6 wk. Systolic blood pressure was significantly reduced beginning at 1 wk, and the effect lasted for 6 wk in the potassium-supplemented group compared with that in the control group. Potassium supplement induced 70 and 40% increases in urinary kallikrein levels and renal bradykinin B2 receptor density, respectively ( P < 0.05), but did not change serum kininogen levels. Similarly, Northern blot analysis showed that renal kallikrein mRNA levels increased 2.7-fold, whereas hepatic kininogen mRNA levels remained unchanged in rats with high potassium intake. No difference was observed in β-actin mRNA levels in the kidney or liver of either group. Competitive RT-PCR showed a 1.7-fold increase in renal bradykinin B2 receptor mRNA levels in rats with high potassium intake. Potassium supplement significantly increased water intake, urine excretion, urinary kinin, cAMP, and cGMP levels. This study suggests that upregulation of the tissue kallikrein-kinin system may be attributed, in part, to blood pressure-lowering and diuretic effects of high potassium intake.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3