Kidney dysfunction induced by a sucrose-rich diet in rat involves mitochondria ROS generation, cardiolipin changes, and the decline of autophagy protein markers

Author:

Ruiz-Ramírez Angélica1,Barrios-Maya Miguel1,Quezada-Pablo Hector2,López-Acosta Ocarol1,El-Hafidi Mohammed1ORCID

Affiliation:

1. Department of Biomedicine Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico

2. Immunology and Proteomics Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico

Abstract

The mechanistic link between obesity and renal failure has been proposed to involve mitochondria reactive oxygen species generation and lipotoxicity. These pathological conditions make mitochondria of particular interest in the regulation of cell function and death by both apoptosis and autophagy. Therefore, this work was undertaken to investigate mitochondria function, autophagy, and apoptosis protein markers in the kidney from a rat model of intra-abdominal obesity and renal damage induced by a high-sucrose diet. Mitochondria from sucrose-fed (SF) kidneys in the presence of pyruvate-malate generated H2O2at a higher rate than from control (79.81 ± 4.98 vs. 65.84 ± 1.95 pmol·min−1·mg protein−1). With succinate, the release of H2O2was significantly higher compared with pyruvate-malate, and it remained higher in SF than in control mitochondria (146.4 ± 8.8 vs. 106.1 ± 5.9 pmol·min−1·mg protein−1). However, cytochrome c release from SF kidney mitochondria was lower than from control. In addition, cardiolipin, a mitochondria-specific phospholipid, was found increased in SF mitochondria due to the enhanced amount of both cardiolipin synthase and tafazzin. Cardiolipin was also found enriched with saturated and monounsaturated fatty acids, which are less susceptible to peroxidative stress involved in cytochrome c release. Furthermore, beclin-1 and light chain 3-B, as autophagy protein markers, and caspase-9, as apoptosis protein marker, were found decreased in SF kidneys. These results suggest that the decline of autophagy protein markers and the lack of apoptosis process could be a pathological mechanism of cell dysfunction leading to the progression of renal disease in SF rats.

Funder

CONACyT

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3