Author:
Talor Z.,Emmanouel D. S.,Katz A. I.
Abstract
Glucagon is avidly degraded by the kidney, but the relative contribution of the luminal and basolateral tubular membranes to this process is unknown. We studied 125I-glucagon degradation by purified luminal (L) and basolateral (BL) tubular membranes prepared from rabbit kidney cortex, which showed enrichment vs. homogenate of marker enzyme activities (Na-K-ATPase for BL and maltase for L) of 10- and 14-fold, respectively. Renal homogenates and both tubular membrane fractions degraded glucagon avidly without reaching saturation even at pharmacologic concentration (10(-5) M) of the hormone. At physiologic concentration (3 x 10(-11) M) BL membranes degraded substantial amounts of glucagon (8.1 +/- 0.9 pg . micrograms protein-1 . h-1) even though at lesser rates (P less than 0.001) than the luminal fraction (33.3 +/- 1.9 pg . micrograms protein-1 . h-1). Competition experiments suggested that glucagon-degrading activity in both fractions includes both specific and nonspecific components, and the potency of different enzyme inhibitors to decelerate glucagon degradation was strikingly similar in the two membrane preparations. Glucagon degradation differed in several important aspects from the manner in which tubular membranes catabolize insulin, including absolute degradation rates and relative degrading capacity of the membranes vs. homogenates, both being substantially higher for glucagon. These results provide direct evidence that the renal metabolism of glucagon also involves its degradation by peritubular cell membranes.
Publisher
American Physiological Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献