Differential regional metabolism of glucagon in anesthetized pigs

Author:

Deacon Carolyn F.,Kelstrup Mette,Trebbien Ramona,Klarskov Letty,Olesen Mette,Holst Jens J.

Abstract

Glucagon metabolism under basal (endogenous) conditions and during intravenous glucagon infusion was studied in anesthetized pigs by use of midregion (M), COOH-terminal (C), and NH2-terminal (N)-RIAs. Arteriovenous concentration differences revealed a negative extraction of endogenous glucagon immunoreactivity across the portal bed (-35.4 ± 11.0, -40.3 ± 9.6, -35.6 ± 16.9%, M-, C-, N-RIA, respectively), reflecting net secretion of pancreatic glucagon and intestinal glicentin and oxyntomodulin, but under exogenous conditions, a net extraction occurred (11.6 ± 3.6 and 18.6 ± 5.7%, C- and N-RIA, respectively). Hindlimb extraction of endogenous (17.4 ± 3.7%, C-RIA) and exogenous (29.1 ± 4.8 and 19.8 ± 5.1%, C- and M-RIA) glucagon was detected, indicating M and C cleavage of the molecule. Renal extraction of glucagon was detected by all assays under endogenous (19.4 ± 6.7, 33.9 ± 7.1, 29.5 ± 6.7%, M-, C-, N-RIA) and exogenous conditions (46.9 ± 4.8, 46.4 ± 6.0, 47.0 ± 7.7%; M-, C-, N-RIA), indicating substantial elimination of the peptide. Hepatic glucagon extraction was undetectable under basal conditions and detected only by M-RIA (10.0 ± 3.8%) during glucagon infusion, indicating limited midregional cleavage of the molecule. The plasma half-life determined by C- and N-RIAs (2.7 ± 0.2 and 2.3 ± 0.2 min) were similar, but both were shorter than when determined by M-RIA (3.2 ± 0.2 min, P < 0.02). Metabolic clearance rates were similar regardless of assay (14.4 ± 1.1, 13.6 ± 1.7, 17.0 ± 1.7 ml·kg-1·min-1, M-, C-, N-RIA). Porcine plasma degraded glucagon, but this was not significantly affected by the dipeptidyl peptidase IV (DPP IV) inhibitor valine-pyrrolidide, and in anesthetized pigs, glucagon's metabolic stability was unchanged by DPP IV inhibition. We conclude that tissue-specific metabolism of glucagon occurs, with the kidney being the main site of removal and the liver playing little, if any, role. Furthermore, valine-pyrrolidide has no effect on glucagon stability, suggesting that DPP IV is unimportant in glucagon metabolism in vivo, in contrast to its significant role in the metabolism of the other proglucagon-derived peptides and glucose-dependent insulinotropic polypeptide.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference46 articles.

1. Blache P, Kervran A, Dufour M, Martinez J, Le-Nguyen D, Lotersztajn S, Pavoine C, Pecker F, and Bataille D. Glucagon-(19-29), a Ca2+ pump inhibitory peptide, is processed from glucagon in the rat liver plasma membrane by a thiol endopeptidase. J Biol Chem 265: 21514-21519, 1990.

2. Quantitative aspects of secretion and hepatic removal of glucagon in sheep

3. Glucagon Clearance by the Isolated Perfused Rat Liver

4. Carone FA, Petersen DR, and Flouret G. Renal tubular processing of small peptide hormones. J Lab Clin Med 100: 1-14, 1982.

5. Miniglucagon (Glucagon 19–29), a Potent and Efficient Inhibitor of Secretagogue-induced Insulin Release through a Ca2+Pathway

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3