Virtual measurements of paracellular permeability and chronic inflammation via color coded pixel-wise T1 mapping

Author:

Singh Nishant1,Zabbarova Irina2,Ikeda Youko2ORCID,Maranchie Jodi1,Chermansky Christopher1,Foley Lesley3,Hitchens T. Kevin3,Yoshimura Naoki1ORCID,Kanai Anthony2,Kaufman Jonathan4,Tyagi Pradeep1ORCID

Affiliation:

1. Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania

2. Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

3. Advanced Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania

4. Lipella Pharmaceuticals, Pittsburgh, Pennsylvania

Abstract

To assess whether quantitative T1 relaxometry can measure permeability, chronic inflammation and mural thickening of mouse bladder wall. Adult female C57BL6 mice unexposed to radiation (controls) or 40 wk postirradiation of 10 Gy were scanned at 9.4 T before and after instillation (0.1 mL) of aqueous, novel contrast mixture (NCM) containing 4 mM gadobutrol and 5 mM ferumoxytol. Rapid acquisition with refocused echo (RARE) sequence was used with variable repetition times (TR). Pixel-wise maps of T1 relaxation times for the segmented bladder wall layers were generated from voxel-wise, nonlinear least square data fitting of TR-dependent signal intensity acquired with TR array of 0.4–10 s followed by the histology of harvested bladder. Significant differences between precontrast and postcontrast T1 (ΔT1) were noted in urothelium and lamina propria of both groups but only in detrusor of irradiated group ( P < 0.001; 2-way ANOVA). Nearly twofold higher gadobutrol permeability (550 ± 73 vs. 294 ± 160 μM; P < 0.01) derived as per 1/ΔT1 = r1. [C] in urothelium of irradiated group. Inflammation and bladder wall thickening (0.75 ± 0. vs. 0.44 ± 0.08 mm; P < 0.001) predicted by MRI was subsequently confirmed by histology and altered expression of CD45 and zonula occludens-1 (ZO-1) relative to controls. NCM enhanced MRI relies on the retention of large molecular weight ferumoxytol in lumen for negative contrast, while permeation of the non-ionic, small molecular weight gadobutrol through ZO-1 generates positive contrast in bladder wall for virtual measurement of paracellular permeability and assessment of chronic inflammation in thin and distensible bladder wall, which is also defined by its variable shape and location within pelvis.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Physiological Society

Subject

Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3