Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct

Author:

Hoffert Jason D.,Nielsen Jakob,Yu Ming-Jiun,Pisitkun Trairak,Schleicher Stephen M.,Nielsen Soren,Knepper Mark A.

Abstract

We recently identified a novel phosphorylation site, serine-261 (pS261), in the COOH-terminus of the vasopressin-regulated water channel, aquaporin-2 (AQP2). To address whether phosphorylation at this site is regulated by vasopressin, a rabbit polyclonal phospho-specific antibody was generated. Dot blot and immunoblot analysis demonstrated that this antibody specifically recognizes AQP2 phosphorylated at pS261, and that phosphorylation of S256 (pS256), a site already known to be regulated by vasopressin, does not interfere with antibody recognition. Immunohistochemical analysis revealed intense pS261 labeling of inner medullary collecting duct (IMCD) from wild-type mice, while sections from AQP2 knockout animals showed a general absence of labeling. AQP2 pS261 was present in principal cells of all mouse and rat distal tubule segments from the connecting tubule to the terminal IMCD. Co-immunolabeling of collecting duct with phospho-specific and total AQP2 antibodies revealed that pS261 and pS256 have distinct subcellular distributions. Levels of pS256 increased, while the amount of pS261 significantly decreased in freshly isolated rat IMCD samples incubated with 1 nM [deamino-Cys1,d-Arg8]vasopressin for 30 min. Similarly, based on immunohistochemical labeling, the amount of pS261 was reduced in all collecting duct segments of Brattleboro rats treated with [deamino-Cys1,d-Arg8]vasopressin for 2 h. This study reveals a reciprocal change in S256 and S261 phosphorylation in response to short-term vasopressin exposure, suggesting that these residues may serve distinct roles in regulation of AQP2 subcellular distribution and collecting duct water permeability.

Publisher

American Physiological Society

Subject

Physiology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3