Renal interstitial adenosine metabolism during ischemia in dogs

Author:

Nishiyama Akira1,Kimura Shoji1,He Hong1,Miura Katsuyuki2,Rahman Matlubur1,Fujisawa Yoshihide3,Fukui Toshiki1,Abe Youichi1

Affiliation:

1. Department of Pharmacology and

2. Department of Pharmacology, Osaka City University Medical School, Osaka 545-8585, Japan

3. Research Equipment Center, Kagawa Medical University, Kagawa 761-0793; and

Abstract

The present study was conducted to determine the metabolism of renal interstitial adenosine under resting conditions and during ischemia. By using a microdialysis method with HPLC-fluorometric analysis, renal interstitial concentrations of adenosine, inosine, and hypoxanthine were assessed in pentobarbital-anesthetized dogs. Average basal renal interstitial concentrations of adenosine, inosine, and hypoxanthine were 0.18 ± 0.04, 0.31 ± 0.05, and 0.35 ± 0.05 μmol/l, respectively. Local inhibition of adenosine kinase with iodotubercidin (10 μmol/l in perfusate) or inhibition of adenosine deaminase with erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; 100 μmol/l in perfusate) did not change adenosine concentrations in the nonischemic kidneys (0.18 ± 0.04 and 0.24 ± 0.05 μmol/l, respectively). On the other hand, treatment with iodotubercidin+EHNA significantly increased adenosine concentration (0.52 ± 0.07 μmol/l) with significant decreases in inosine and hypoxanthine levels (0.13 ± 0.03 and 0.19 ± 0.04 μmol/l, respectively). During 30 min of ischemia, adenosine, inosine, and hypoxanthine were significantly increased to 0.76 ± 0.29, 2.14 ± 0.45, and 21.8 ± 4.7 μmol/l, respectively. The treatment with iodotubercidin did not alter ischemia-induced increase in adenosine (0.84 ± 0.18 μmol/l); however, EHNA alone markedly enhanced adenosine accumulation (13.54 ± 2.16 μmol/l), the value of which was not augmented by an addition of iodotubercidin (15.80 ± 1.24 μmol/l). In contrast, ischemia-induced increases in inosine and hypoxanthine were inversely diminished by the treatment with iodotubercidin+EHNA (0.90 ± 0.20 and 9.86 ± 1.96 μmol/l, respectively). These results suggest that both adenosine kinase and adenosine deaminase contribute to the metabolism of renal interstitial adenosine under resting conditions, whereas adenosine produced during ischemia is mainly metabolized by adenosine deaminase and the rephosphorylation of adenosine by adenosine kinase is small.

Publisher

American Physiological Society

Subject

Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3