Dipyridamole decreases glomerular filtration in the sodium-depleted dog. Evidence for mediation by intrarenal adenosine.

Author:

Arend L J,Thompson C I,Spielman W S

Abstract

To determine the renal effects of inhibiting the uptake and subsequent metabolism of endogenous adenosine, dipyridamole, a nucleoside transport inhibitor, was infused intrarenally into anesthetized dogs. Dipyridamole (24 micrograms/kg per min) inhibited the cellular extraction of [14C]adenosine (72 +/- 3% vs. 9 +/- 3%) and elevated the excretion of endogenous adenosine (0.60 +/- 0.08 to 1.70 +/- 0.21 nmol/min, P less than 0.05). The action of exogenous adenosine to decrease glomerular filtration rate is known to be enhanced by sodium depletion, and is minimal or absent in sodium-loaded animals. To ascertain whether dietary sodium intake alters the renal effects of elevated endogenous adenosine, dipyridamole was infused into sodium-depleted and sodium-loaded dogs. In the sodium-depleted dogs (n = 9), dipyridamole infusion decreased the glomerular filtration rate by 59 +/- 7% (20 +/- 1 to 8 +/- 2 ml/min, P less than 0.05) which returned to control levels within 30 minutes after stopping infusion of dipyridamole. Renal vascular resistance was unchanged during dipyridamole infusion. In the sodium-loaded dogs (n = 5), dipyridamole had no effect on glomerular filtration rate (22 +/- 4 vs. 25 +/- 3 ml/min) or renal vascular resistance. In a separate series of sodium-depleted dogs (n = 8), the dipyridamole-induced decrease in glomerular filtration rate was completely reversed or inhibited by theophylline, an adenosine receptor antagonist. These experiments demonstrate that inhibition of cellular uptake of adenosine elevates adenosine levels, that dipyridamole decreases glomerular filtration rate in sodium-depleted but not sodium-loaded dogs, and that the decrease in glomerular filtration rate is inhibited by theophylline. We conclude that the decrease in glomerular filtration rate during dipyridamole administration is mediated by increased endogenous adenosine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference22 articles.

1. Arch JRS Newsholme EA (1978) The control of the metabolism and the hormonal role of adenosine. In Essays in Biochemistry vol 14 edited by PN Campbell F Dickens. New York Academic Press pp 82-124

2. Membrane Transport of Purine and Pyrimidine Bases and Nucleosides in Animal Cells

3. Beme RM Rubio R (1974) Adenine nudeotide metabolism in the heart. Circ Res 34 35 (suppl III): 109-120

4. Simplification of the anthrone method for determination of inulin in clearance studies;Davidson WD;J Lab ClinMed,1963

5. Coronary physiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3