Increased cAMP in proximal tubules is acute effect of nicotinamide analogues

Author:

Campbell P. I.1,Abraham M. I.1,Kempson S. A.1

Affiliation:

1. Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46223.

Abstract

The possible role of adenosine 3',5'-cyclic monophosphate (cAMP) in the mechanism of the acute inhibitory effects of nicotinamide and analogues on brush-border membrane (BBM) phosphate transport was investigated. Compared with basal values, cAMP content of rat renal proximal tubule suspensions was elevated two- to fivefold when incubated at 37 degrees C for 1 h with nicotinamide, 5-methylnicotinamide, or picolinamide at 1–3 mM and in the presence of a phosphodiesterase inhibitor. Thymidine had no effect on cAMP content. There was significant and specific inhibition of BBM transport of phosphate when proximal tubules were incubated with either nicotinamide or picolinamide at concentrations that increased tubule cAMP content. Thymidine had no effect on BBM transport of phosphate. These findings were independent of the dietary Pi intake of the rats. The absence of any effect of thymidine on phosphate transport strongly suggests that inhibition of poly(adenosine diphosphate ribose) polymerase does not play a role in nicotinamide action on phosphate transport. The change in phosphate transport induced by nicotinamide occurred with no change in NAD content. These findings indicate that an increase in cAMP, rather than NAD, is the important change that may mediate the acute inhibition of Na(+)-dependent phosphate transport by nicotinamide.

Publisher

American Physiological Society

Subject

Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3