Detection of cellular hypoxia by pimonidazole adduct immunohistochemistry in kidney disease: methodological pitfalls and their solution

Author:

Ow Connie P. C.1ORCID,Ullah Md Mahbub1ORCID,Ngo Jennifer P.1ORCID,Sayakkarage Adheeshee1,Evans Roger G.1ORCID

Affiliation:

1. Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia

Abstract

Pimonidazole adduct immunohistochemistry is one of the few available methods for assessing renal tissue hypoxia at the cellular level. It appears to be prone to artifactual false positive staining under some circumstances. Here, we assessed the nature of this false positive staining and, having determined how to avoid it, reexamined the nature of cellular hypoxia in rat models of kidney disease. When a mouse-derived anti-pimonidazole primary antibody was used, two types of staining were observed. First, there was diffuse staining of the cytoplasm of tubular epithelial cells, which was largely absent when the primary antibody was omitted from the incubation protocol or in tissues known not to contain pimonidazole adducts. Second, there was staining of the apical membranes of tubular epithelial cells, debris within the lumen of renal tubules, including tubular casts, and the interstitium; this latter staining was present even when the primary antibody was omitted from the incubation protocol. Such false positive staining was particularly prominent in acutely injured kidneys. It could not be avoided by preincubation of sections with a mouse IgG blocking reagent. Furthermore, preadsorption of the secondary antibody against rat Ig abolished all staining; however, when a rabbit-derived polyclonal anti-pimonidazole primary antibody was used, the false positive staining was largely avoided. Using this method, we confirmed the presence of hypoxia, localized mainly to the tubular epithelium, in the acute phase of severe renal ischemia-reperfusion injury, adenine-induced chronic kidney disease, and polycystic kidney disease. We conclude that this new method provides improved detection of renal cellular hypoxia.

Funder

National Health and Medical Research Council of Australia

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3