Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function

Author:

Basile David P.1,Donohoe Deborah1,Roethe Kelly1,Osborn Jeffrey L.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Abstract

First published August 9, 2001; 10.1152/ajprenal.00050.2001.—Acute episodes of severe renal ischemia result in acute renal failure (ARF). These episodes are followed by a characteristic recovery and repair response, whereby tubular morphology and renal function appear completely restored within ∼1 mo. However, the chronic effects of such an injury have not been well studied. Male rats were subjected to 60-min bilateral ischemia followed by reperfusion, yielding a characteristic injury. Postischemic animals manifested severe diuresis, peaking at 1 wk postinjury (volume: >45 ml/day, ARF vs. 18 ml/day, sham; P < 0.05). Urine flow subsequently declined but remained significantly elevated vs. sham animals for a 40-wk period. The prolonged alteration in urinary concentrating ability was attributable, in part, to a diminished capacity to generate a hypertonic medullary interstitium. By week 16, proteinuria developed in the post-ARF group and progressed for the duration of the study. Histological examination revealed essentially normal tubular morphology at 4 and 8 wk postinjury but the development of tubulointerstitial fibrosis at 40 wk. Transforming growth factor (TGF)-β1 expression was elevated at 40 wk, but not at 4 and 8 wk postinjury. Microfil analysis revealed an ∼30–50% reduction in peritubular capillary density in the inner stripe of the outer medulla at 4, 8, and 40 wk in post-ARF groups vs. sham animals. In addition, post-ARF rats manifested a significant pressor response to a low dose of ANG II (15 ng · kg−1· min−1). We hypothesize that severe ischemic injury results in a permanent alteration of renal capillary density, contributing to a urinary concentrating defect and the predisposition toward the development of renal fibrosis.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3