Reactive oxygen species participate in acute renal vasoconstrictor responses induced by ETAand ETBreceptors

Author:

Just Armin,Whitten Christina L.,Arendshorst William J.

Abstract

Reactive oxygen species (ROS) play important roles in renal vasoconstrictor responses to acute and chronic stimulation by angiotensin II and norepinephrine, as well as in long-term effects of endothelin-1 (ET-1). Little is known about participation of ROS in acute vasoconstriction produced by ET-1. We tested the influence of NAD(P)H oxidase inhibition by apocynin [4 mg·kg−1·min−1, infused into the renal artery (ira)] on ETAand ETBreceptor signaling in the renal microcirculation. Both receptors were stimulated by ET-1, ETAreceptors by ET-1 during ETBantagonist BQ-788, and ETBby ETBagonist sarafotoxin 6C. ET-1 (1.5 pmol injected ira) reduced renal blood flow (RBF) 17 ± 4%. Apocynin raised baseline RBF (+10 ± 1%, P < 0.001) and attenuated the ET-1 response to 10 ± 2%, i.e., 35 ± 9% inhibition ( P < 0.05). Apocynin reduced ETA-induced vasoconstriction by 42 ± 12% ( P < 0.05) and that of ETBstimulation by 50 ± 8% ( P < 0.001). During nitric oxide (NO) synthase inhibition ( Nω-nitro-l-arginine methyl ester), apocynin blunted ETA-mediated vasoconstriction by 60 ± 8% ( P < 0.01), whereas its effect on the ETBresponse (by 87 ± 8%, P < 0.001) was even larger without than with NO present ( P < 0.05). The cell-permeable superoxide dismutase mimetic tempol (5 mg·kg−1·min−1ira), which reduces O2and may elevate H2O2, attenuated ET-1 responses similar to apocynin (by 38 ± 6%, P < 0.01). We conclude that ROS, O2rather than H2O2, contribute substantially to acute renal vasoconstriction elicited by both ETAand ETBreceptors and to basal renal vasomotor tone in vivo. This physiological constrictor action of ROS does not depend on scavenging of NO. In contrast, scavenging of O2by NO seems to be more important during ETBstimulation.

Publisher

American Physiological Society

Subject

Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3