Author:
Just Armin,Whitten Christina L.,Arendshorst William J.
Abstract
Reactive oxygen species (ROS) play important roles in renal vasoconstrictor responses to acute and chronic stimulation by angiotensin II and norepinephrine, as well as in long-term effects of endothelin-1 (ET-1). Little is known about participation of ROS in acute vasoconstriction produced by ET-1. We tested the influence of NAD(P)H oxidase inhibition by apocynin [4 mg·kg−1·min−1, infused into the renal artery (ira)] on ETAand ETBreceptor signaling in the renal microcirculation. Both receptors were stimulated by ET-1, ETAreceptors by ET-1 during ETBantagonist BQ-788, and ETBby ETBagonist sarafotoxin 6C. ET-1 (1.5 pmol injected ira) reduced renal blood flow (RBF) 17 ± 4%. Apocynin raised baseline RBF (+10 ± 1%, P < 0.001) and attenuated the ET-1 response to 10 ± 2%, i.e., 35 ± 9% inhibition ( P < 0.05). Apocynin reduced ETA-induced vasoconstriction by 42 ± 12% ( P < 0.05) and that of ETBstimulation by 50 ± 8% ( P < 0.001). During nitric oxide (NO) synthase inhibition ( Nω-nitro-l-arginine methyl ester), apocynin blunted ETA-mediated vasoconstriction by 60 ± 8% ( P < 0.01), whereas its effect on the ETBresponse (by 87 ± 8%, P < 0.001) was even larger without than with NO present ( P < 0.05). The cell-permeable superoxide dismutase mimetic tempol (5 mg·kg−1·min−1ira), which reduces O2−and may elevate H2O2, attenuated ET-1 responses similar to apocynin (by 38 ± 6%, P < 0.01). We conclude that ROS, O2−rather than H2O2, contribute substantially to acute renal vasoconstriction elicited by both ETAand ETBreceptors and to basal renal vasomotor tone in vivo. This physiological constrictor action of ROS does not depend on scavenging of NO. In contrast, scavenging of O2−by NO seems to be more important during ETBstimulation.
Publisher
American Physiological Society
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献