Stem cell antigen/Ly6a protects against bladder fibrosis in mice

Author:

Tassone Nicholas M.1,Li Belinda2,Patel Mehul S.3,Devine Megan Y.1,Firmiss Paula R.1,Gould Andrew D.1,Kochan Kirsten S.1,Stubbee Reid A.1,Bowen Diana K.3,Dettman Robert W.13,Gong Edward M.13

Affiliation:

1. Pediatric Urology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois

2. Department of Urology, Loyola University Health System, Maywood, Illinois

3. Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois

Abstract

We have defined a population of stem cell antigen (Sca)-1+/CD34+/lin mesenchymal stem cells in the mouse urinary bladder. These cells are reduced after partial bladder outlet obstruction (PO). To test the role of Sca-1 expressed by these cells, we analyzed bladders from Sca-1 knockout (KO) mice in both uninjured male mice and male mice subjected to PO. We found that loss of Sca-1 alone had little effect on bladder development or function but reduced the total number of mesenchymal stem cells by 30%. After PO, bladders from Sca-1-null KO male mice were larger, with more collagen and less muscle, than obstructed wild-type mice. Steady-state levels of caldesmon were significantly reduced and levels of fibroblast-specific protein 1 were significantly increased in Sca-1 KO mice compared with wild-type mice after PO. In investigating the effects of PO on cell proliferation, we found that loss of Sca-1 changed the timing of cell division in CD34+/lin, collagen-producing, and smooth muscle cells. PO in combination with loss of Sca-1 drastically reduced the ability of CD34+/lin cells to form colonies in vitro. Our findings therefore support the hypothesis that Sca-1 protects the bladder from fibrotic remodeling after obstruction, in part by influencing the proliferation of cells responding to the injury.

Funder

Hartwell Foundation

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3