Affiliation:
1. Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
Abstract
Fibroblasts are integral to the organization and function of all organs and play critical roles in pathologies such as fibrosis; however, we have limited understanding of the fibroblasts that populate the bladder and kidney. In this review, I describe how transcriptomics is leading to a revolution in our understanding of fibroblast biology by defining the molecular fingerprint (i.e., transcriptome) of universal and specialized fibroblast types, revealing gene signatures that allows one to resolve fibroblasts from other mesenchymal cell types, and providing a new comprehension of the fibroblast lineage. In the kidney, transcriptomics is giving us new insights into the molecular fingerprint of kidney fibroblasts, including those for cortical fibroblasts, medullary fibroblasts, and erythropoietin (EPO)-producing Norn fibroblasts, as well as new information about the gene signatures of kidney myofibroblasts and the transition of kidney fibroblasts into myofibroblasts. Transcriptomics has also revealed that the major cell type in the bladder interstitium is the fibroblast, and that multiple fibroblast types, each with their own molecular fingerprint, are found in the bladder wall. Interleaved throughout is a discussion of how transcriptomics can drive our future understanding of fibroblast identification, diversity, function, and their roles in bladder and kidney biology and physiology in health and in disease states.
Funder
HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases
HHS | NIH | NIH Office of the Director
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases
Publisher
American Physiological Society