Sex differences in vasopressin V2 receptor expression and vasopressin-induced antidiuresis

Author:

Liu Jun1,Sharma Nikhil2,Zheng Wei1,Ji Hong1,Tam Helen2,Wu Xie1,Manigrasso Michaele B.2,Sandberg Kathryn1,Verbalis Joseph G.2

Affiliation:

1. Division of Nephrology and Hypertension, Department of Medicine, Georgetown University Medical Center, Washington, District of Columbia

2. Division of Endocrinology and Metabolism and

Abstract

The renal vasopressin V2 receptor (V2R) plays a critical role in physiological and pathophysiological processes associated with arginine vasopressin (AVP)-induced antidiuresis. Because clinical data suggests that females may be more prone to hyponatremia from AVP-mediated antidiuresis, we investigated whether there are sex differences in the expression and function of the renal V2R. In normal Sprague-Dawley rat kidneys, V2R mRNA and protein expression was 2.6- and 1.7-fold higher, respectively, in females compared with males. To investigate the potential physiological implications of this sex difference, we studied changes in urine osmolality induced by the AVP V2R agonist desmopressin. In response to different doses of desmopressin, there was a graded increase in urine osmolality and decrease in urine volume during a 24-h infusion. Females showed greater mean increases in urine osmolality and greater mean decreases in urine volume at 0.5 and 5.0 ng/h infusion rates. We also studied renal escape from antidiuresis produced by water loading in rats infused with desmopressin (5.0 ng/h). After 5 days of water loading, urine osmolality of both female and male rats escaped to the same degree physiologically, but V2R mRNA and protein in female kidneys was reduced to a greater degree (−63% and −73%, respectively) than in males (−32% and −48%, respectively). By the end of the 5-day escape period, renal V2R mRNA and protein expression were reduced to the same relative levels in males and females, thereby abolishing the sex differences in V2R expression seen in the basal state. Our results demonstrate that female rats express significantly more V2R mRNA and protein in kidneys than males, and that this results physiologically in a greater sensitivity to V2R agonist administration. The potential pathophysiological implications of these results are that females may be more susceptible to the development of dilutional hyponatremia because of a greater sensitivity to endogenously secreted AVP.

Publisher

American Physiological Society

Subject

Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3