Effects of acid challenges on type 2 angiotensin II receptor-sensitive ammonia production by the proximal tubule

Author:

Nagami Glenn T.1,Plumer Alexandria K.1,Beyda Raymond M.1,Schachter Oran1

Affiliation:

1. Nephrology Section 111L, Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California

Abstract

Angiotensin II (ANG II) acting through its type 1 (AT1) receptor stimulates total ammonia (tNH3) production by the proximal tubule. The present studies explored the role of ANG II type 2 (AT2) receptors in modulating the stimulatory effects of ANG II on tNH3 production. Mouse S2 proximal tubule segments derived from 18-h and 7-day acid-loaded mice, and non-acid-loaded controls were dissected and microperfused in vitro. Adding ANG II to the luminal perfusion solution resulted in different increments in tNH3 production rates in tubules derived from 18-h vs. 7-day acid-loaded mice such that the increase in tNH3 production with ANG II was higher in tubules derived from 18-h acid-loaded mice compared with those derived from control and 7-day acid-loaded mice. Adding the AT2 receptor blocker PD123319 with ANG II increased ANG II-stimulated tNH3 production in S2 segments from control and 7-day acid-loaded mice but not in those from 18-h acid-loaded mice, and this increased effect of PD123319 was associated with higher AT2 receptor protein levels in brush-border membranes. Studies in cultured proximal tubule cells demonstrated that 2-h exposure to pH 7.0 reduced the modulating effect of PD123319 on ANG II-simulated tNH3 production and reduced cell surface AT2 receptor levels. We concluded that AT2 receptors reduce the stimulatory effect of ANG II on proximal tubule tNH3 production and that the time-dependent impact of AT2 receptor blockade on the ANG II-stimulated tNH3 production corresponded to time-dependent changes in AT2 receptor cell surface expression in the proximal tubule.

Publisher

American Physiological Society

Subject

Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3